Autoimmunity-associated protein tyrosine phosphatase PEP negatively regulates IFN-α receptor signaling
نویسندگان
چکیده
The protein tyrosine phosphatase PTPN22(C1858T) allelic polymorphism is associated with increased susceptibility for development of systemic lupus erythematosus (SLE) and other autoimmune diseases. PTPN22 (also known as LYP) and its mouse orthologue PEP play important roles in antigen and Toll-like receptor signaling in immune cell functions. We demonstrate here that PEP also plays an important inhibitory role in interferon-α receptor (IFNAR) signaling in mice. PEP co-immunoprecipitates with components of the IFNAR signaling complex. Pep(-/-) hematopoietic progenitors demonstrate increased IFNAR signaling, increased IFN-inducible gene expression, and enhanced proliferation and activation compared to Pep(+/+) progenitors in response to IFN-α. In addition, Pep(-/-) mice treated with IFN-α display a profound defect in hematopoiesis, resulting in anemia, thrombocytopenia, and neutropenia when compared to IFN-α-treated Pep(+/+) mice. As SLE patients carrying the PTPN22(C1858T) risk variant have higher serum IFN-α activity, these data provide a molecular basis for how type I IFNs and PTPN22 may cooperate to contribute to lupus-associated cytopenias.
منابع مشابه
Different modulation of Ptpn22 in effector and regulatory T cells leads to attenuation of autoimmune diabetes in transgenic nonobese diabetic mice.
Ptpn22 encodes PEST domain-enriched tyrosine phosphatase (Pep), which negatively regulates TCR proximal signaling and is strongly associated with a variety of autoimmune diseases in humans. The net effect of Pep on the balance of immunity and tolerance is uncertain because of the simultaneous inhibition of TCR-mediated signaling of effector and regulatory T cells (T(regs)). In this study, we ge...
متن کاملDietary quercetin potentiates the antiproliferative effect of interferon-α in hepatocellular carcinoma cells through activation of JAK/STAT pathway signaling by inhibition of SHP2 phosphatase
Type I interferons (IFN-α/β) have broad and potent immunoregulatory and antiproliferative activities, which are negatively regulated by Src homology domain 2 containing tyrosine phosphatase-2 (SHP-2). Inhibition of SHP2 by small molecules may be a new strategy to enhance the effcacy of type I IFNs. Using an in vitro screening assay for new inhibitors of SHP2 phosphatase, we found that quercetin...
متن کاملA disease-associated PTPN22 variant promotes systemic autoimmunity in murine models.
Multiple autoimmune diseases, including type 1 diabetes, rheumatoid arthritis, Graves disease, and systemic lupus erythematosus, are associated with an allelic variant of protein tyrosine phosphatase nonreceptor 22 (PTPN22), which encodes the protein LYP. To model the human disease-linked variant LYP-R620W, we generated knockin mice expressing the analogous mutation, R619W, in the murine orthol...
متن کاملThe protein tyrosine phosphatase PTP1B is a negative regulator of CD40 and BAFF-R signaling and controls B cell autoimmunity
Tyrosine phosphorylation of signaling molecules that mediate B cell activation in response to various stimuli is tightly regulated by protein tyrosine phosphatases (PTPs). PTP1B is a ubiquitously expressed tyrosine phosphatase with well-characterized functions in metabolic signaling pathways. We show here that PTP1B negatively regulates CD40, B cell activating factor receptor (BAFF-R), and TLR4...
متن کاملProtein-tyrosine phosphatase-1B negatively regulates insulin signaling in l6 myocytes and Fao hepatoma cells.
Insulin signaling is regulated by tyrosine phosphorylation of the signaling molecules, such as the insulin receptor and insulin receptor substrates (IRSs). Therefore, the balance between protein-tyrosine kinases and protein-tyrosine phosphatase activities is thought to be important in the modulation of insulin signaling in insulin-resistant states. We thus employed the adenovirus-mediated gene ...
متن کامل